Sportsbook in iframe

Brief Description

This service provides external consumers with access to a sportsbook.
The provider is a betting platform that provides the online sportsbook to the merchant.

The merchant is a legal entity that has entered into or is planning to enter into an agreement with the provider for the provision of betting services and/or
the provision of related services.

The sportsbook includes the following functionality:

- Information on upcoming events
- Information on live broadcasts

- Information on betting history

- Information on event results

- Information on statistics

- Placing bets

To integrate the service, you need to configure the API and iframe
The provider gives the merchant operator and operatorKey during the integration development process

® operator is a merchant's identifier in provider's system
® operatorKey is a secret key, used in hashing by both merchant and provider

Serialization Requirements:

. encoding: UTF-8

. property names are compared case-insensitively

. naming policy is camel case. Example: textForExample

. Enumerations are serialized as strings

. fields with missing values (null or 0) are not ignored and serialized with default values
number handling:

oA WN

reading from strings is allowed. Example: "field": 42 and "field": "42" will be deserialized as the number 42

currency names must be represented using their alphabetic code, according to the ISO 4217 standard. Example: USD, CLP, RUB
currencies that have minor units must be transmitted in minor units. Example: 100.12 USD = 10012, 100.00 RUB = 10000
currencies that do not have minor units are transmitted in standard values. Example: 100 CLP = 100, 100 JPY = 100

the number of minor units is determined by the ISO 4217 standard

Response codes:
A successful response contains the "Ok" code
Errors:

Undefined

InternalError
InvalidRequest
InvalidHash
UserNotFound
InsufficientFunds
MaxBetAmountExceeded
BetNotFound
SessionTokenNotFound
InvalidCurrency

If an error occurs, return a JSON object ErrorResponse

ErrorResponse

Ne Name Data Type Nullability

1 ErrorCode string not null

2 ErrorMessage string null

Generation hash:

The hash is generated using the hmac-sha256 algorithm. The message is a concatenation of the method name and fields without spaces. The key used is
the operatorKey.

Authenticate: "authenticate{Token}", getbalance: "getbalance{userld}{currency}", changebalance: "changebalance{betld}{userld}{currency}{amount}
{transactionType}"

Service Methods:

Authorization and Authentication:

- For authorized users, a token must be generated and inserted into the URL. Example URL: https://provider.com/live?session_token={token}&operator=
{operator}&hash={hash}
- Unauthorized users do not require a token. However, they will not have access to the betting functionality.

Use case:
Precondition: The user may or may not be authenticated.
Trigger: The user navigates to a page with an iframe.

Steps:
1. The merchant checks the user's authentication status.

a. If the user is authenticated:

i. The merchant generates a session token

ii. The merchant inserts the session token and operator name into the URL. Example URL: https://provider.com/live?session_token={token}
&operator={operator}&hash={hash}

iii. The merchant calculates hash from the session token and operator as: hash(message, secretKey), where message is concatenation of
session_token and operator ("{session_token}{operator}"), secretKey is operatorKey, given to the merchant by provider

iv. The provider sends a request to the merchant (AuthenticateRequest)

v. The merchant sends user information to the provider (AuthenticateResponse)

vi. The provider authenticates the user

vii. The provider grants the user access to betting

b. If the user is not authenticated:
i. The merchant displays the provider’s website without betting functionality. Example URL: https://provider.com/live

Authenticate

Method POST /api/authenticate
Input data AuthenticateRequest

Outputdata = AuthenticateResponse

AuthenticateRequest

Ne Name Data Type Nullability
1 Token string not null
2 Hash string not null
AuthenticateResponse
Ne Name Data Type Nullability
1 Userld string (64) not null
2 Username string (100) not null
3 Currency string(3) not null

Player balance adjustment:

Use case:
Precondition: The user is authenticated.
Trigger: The user places a bet.

Steps:

1. The provider sends a user balance request (GetBalanceRequest).

2. The merchant sends the user’s balance (GetBalanceResponse).

a. If the user has sufficient funds:

Description

Session token generated by merchant

Description

Unique user ID in merchant's system
User display name. Duplicates are allowed

User currency (ISO 4217 alphabetic code)

i. The provider sends a balance change request along with bet details (ChangeBalanceRequest).
ii. The merchant updates the user’s balance and sends transaction details (ChangeBalanceResponse).

ii. The provider processes the bet.

b. If the user has insufficient funds:
i. The provider rejects the bet.

Get Balance
Method POST /api/getbalance
Input data GetBalanceRequest

Output data = GetBalanceResponse

GetBalanceRequest

Ne Name Data Type Nullability
1 Userld string(64) not null
2 Currency string(3) not null
3 Hash string not null

GetBalanceResponse

Description

Unique user ID in merchant's system

User currency (ISO 4217 alphabetic code)

Ne Name Data Type Nullability
1 Balance | int (long) not null
2 Currency = string (3) not null
Change Balance
Method POST /api/changebalance
Input data ChangeBalanceRequest
Outputdata = ChangeBalanceResponse

ChangeBalanceRequest

Description

User balance

User currency (ISO 4217 alphabetic code). User's currency must not differ in subsequent requests

Ne Name Data Type Nullability Description
1 Betld int (64) not null Bet ID in provider's system
2 Userld string (64) not null Unique user ID in merchant's system
3 Currency string (3) not null User currency (ISO 4217 alphabetic code)
4 Amount number not null Transaction amount. The value is always greater than 0
5 TransactionType = enum(string) | not null Transaction type:
® BetPlacement - debit of funds to place a bet
® BetRefund - depositing funds due to bet refund
® BetWin - depositing funds due to bet win
® BetRecalculation - debit of funds due to recalculation of the bet
6 Hash string not null -
ChangeBalanceResponse
Ne Name Data Type Nullability Description
1 Balance int (long) not null User balance
2 Currency string (3) not null User currency (ISO 4217 alphabetic code). User's currency must not differ in subsequent requests
3 Transactionld = string (64) not null Unique transaction ID in merchant's system

Sequence diagrams

Authentication

|[Frame Frovider IMerchant
FPlayer
b | |
| |
Visits the page | I
> | |
; | |
sessionToken p L I
|
alt [session active] |
|
FPage I
- - -2 l
|
Page |
Rty !
"""" [session notfound] | | |° ""'"""""""""""':"""'
|
Authenticate(sessionToken) |
User info
opt) [Account doesn’t exist]
Create account
Sign In & reload page
FPage

Change balance

Provider Merchant
Player

- I

I

Make bet I

POST GetBalance(userld)
Balance
o R ——
alt [betamount > Balance]
Insufficient funds
......... AL T It LRL b RLLALLLALESRRLLLCALEELREREREES b RARERRRCRELLREALEEED
POST ChangeBalance
Balance check
alt [betamount = Balance]

Insufficient funds

) [betamount <= Balance]

Bet accepted

Error {(InsufficientFunds)

ExternalTransactionld

Create bet and account transaction

PR

Create transaction

PR

	Sportsbook in iframe

