
1.

2.

3.

4.

5.

6.

7.

1.
2.
3.
4.
5.
6.

Сrazy cock
Brief Description
This service provides external consumers with access to the game "Crazy Cock". A player increases the bet multiplier by moving the character forward
step by step. Each step carries a risk of the character’s death, but the user can cash out their winnings at any point during the game.

The goal is to guide the character to the end without dying and achieve the maximum possible payout.

The game operates with the following mechanics:

Setting Up and Starting the Game:
The user sets the bet amount and starts the game, controlling a character that moves across the game field.
Game Field Cells:
Cells on the field display win multipliers. One of the cells contains a .mine
Wheel of Fortune:
A secondary gameplay element that influences the game outcome.
Cashout Option:
The player can at any time (via the "Cashout" button) or continue moving forward.cash out their winnings
Success Probability Formula:
The chance of a successful move is calculated using a formula that incorporates .RTP (Return to Player)
Final Cell Reward:
Reaching the final cell grants the user the .maximum payout
Spacebar Actions:
Pressing the allows the user to:spacebar

Move the character forward,
Activate the ,Wheel of Fortune
Speed up the wheel's rotation.

To integrate the service, you need to configure the API and iframe.

Serialization Requirements:

Encoding: UTF-8
property names are compared case-insensitively
naming policy is camel case. Example: textForExample
Enumerations are serialized as strings
fields with missing values ​​(null or 0) are not ignored and serialized with default values
number handling:

Reading from strings is allowed. Example: "field": 42 and "field": "42" will be deserialized as the number 42
Currency names must be represented using their alphabetic code, according to the ISO 4217 standard. Example: USD, CLP, RUB
Currencies that have minor units must be transmitted in minor units. Example: 100.12 USD = 10012, 100.00 RUB = 10000
Currencies that do not have minor units are transmitted in standard values. Example: 100 CLP = 100, 100 JPY = 100
The number of minor units is determined by the ISO 4217 standard

Response codes:

A successful response contains the "Ok" code

Errors:

Undefined
InternalError

Step – Moving the character to the adjacent cell to the right.
 – The character survives, and the bet multiplier increases.Successful step

 – The character dies, and the game ends.Unsuccessful step
 – The character dies.Death

 – The character is killed by a falling egg.Standard death
 – A random selection of one of the outcomes on the sectors.Wheel of Fortune

InvalidRequest
InvalidHash
UserNotFound
InsufficientFunds
MaxBetAmountExceeded
BetNotFound
SessionTokenNotFound
InvalidCurrency

If an error occurs, return a JSON object ErrorResponse

ErrorResponse

№ Name Data Type Nullability

1 ErrorCode string not null

2 ErrorMessage string null

Generation hash:

The hash is generated using the hmac-sha256 algorithm. The message is a concatenation of the method name and fields without spaces. The key used is
the operatorKey.

Authenticate: "authenticate{token}", getbalance: "getbalance{userId}{currency}", changebalance: "changebalance{betId}{userId}{currency}{amount}
{transactionType}"

Service Methods:

Authorization and Authentication:

 - For authorized users, a token must be generated and inserted into the URL. Example URL: https://provider.com/live?session_token={token}&operator=
}{operator}&hash={hash

- Unauthorized users receive a 403 Forbidden error.

Use case:

Precondition: The user may or may not be authenticated.

Trigger: The user navigates to a page with an iframe.

Steps:

The merchant checks the user's authentication status.

 a. If the user is authenticated:
 i. The merchant generates a session token
 ii. The merchant inserts the session token and operator name into the URL. Example URL: https://provider.com/live?session_token={token}

}&operator={operator}&hash={hash
 iii. The merchant calculates hash from the session token and operator as: hash(message, secretKey), where message is concatenation of
session_token and operator ("{session_token}{operator}"), secretKey is operatorKey, given to the merchant by provider
 iv. The provider sends a request to the merchant (AuthenticateRequest)
 v. The merchant sends user information to the provider (AuthenticateResponse)
 vi. The provider authenticates the user
 vii. The provider grants the user access to the game

 b. If the user is not authenticated:
 i. The merchant displays the provider’s website withe a 403 Forbidden error

Authenticate

https://provider.com/live?session_token={token}&operator={operator}&hash={hash
https://provider.com/live?session_token={token}&operator={operator}&hash={hash
https://provider.com/live?session_token={token}&operator={operator}&hash={hash
https://provider.com/live?session_token={token}&operator={operator}&hash={hash

Method POST /api/authenticate

Input data AuthenticateRquest

Output data AuthenticateResponse

If an error occurs, return a JSON object ErrorResponse

AuthenticateRequest

№ Name Data Type Nullability Description

1 Token string not null Session token generated by merchant

2 operator string not null Operator name. Issued to the merchant by the provider

3 Hash string not null -

AuthenticateResponse

№ Name Data Type Nullability Description

1 UserId string (64) not null Unique user ID in merchant's system

2 Username string (100) not null User display name. Duplicates are allowed

3 Currency string(3) not null User currency (ISO 4217 alphabetic code)

Player balance adjustment:

Use case:

Precondition: The user is authenticated.

Trigger: The user places a bet.

Steps:
1. The provider sends a user balance request: UserId, Hash (GetBalanceRequest)
2. The merchant sends the user’s balance: Balance, Currency (GetBalanceResponse)

 a. If the user has sufficient funds:
 i. The provider sends a balance change request along with bet details: BetId, UserId, Currency, Amount, TransactionType, Hash
(ChangeBalanceRequest)
 ii. The merchant updates the user’s balance and sends transaction details: Balance, Currency, TransactionId (ChangeBalanceResponse)
 iii. The provider processes the bet

 b. If the user has insufficient funds:
 i. The provider rejects the bet

Get Balance

Method POST /api/getbalance

Input data GetBalanceRequest

Output data GetBalanceResponse

GetBalanceRequest

№ Name Data Type Nullability Description

1 UserId string(64) not null Unique user ID in merchant's system

2 Currency string(3) not null User currency (ISO 4217 alphabetic code)

3 Hash string not null -

GetBalanceResponse

№ Name Data Type Nullability Description

1 Balance int (long) not null User balance

2 Currency string (3) not null User currency (ISO 4217 alphabetic code). User's currency must not differ in subsequent requests

Change Balance

Method POST /api/changebalance

Input data ChangeBalanceRequest

Output data ChangeBalanceResponse

ChangeBalanceRequest

№ Name Data Type Nullability Description

1 BetId int (64) not null Bet ID in provider's system

2 UserId string (64) not null Unique user ID in merchant's system

3 Currency string (3) not null User currency (ISO 4217 alphabetic code)

4 Amount number not null Transaction amount. The value is always greater than 0

5 TransactionType enum(string) not null Transaction type:

BetPlacement - debit of funds to place a bet
BetRefund - depositing funds due to bet refund
BetWin - depositing funds due to bet win

6 Hash string not null -

ChangeBalanceResponse

№ Name Data Type Nullability Description

1 Balance int (long) not null User balance

2 Currency string (3) not null User currency (ISO 4217 alphabetic code). User's currency must not differ in subsequent requests

3 TransactionId string (64) not null Unique transaction ID in merchant's system

Sequence diagrams

	Сrazy cock

