Crazy cock

Brief Description

This service provides external consumers with access to the game "Crazy Cock". A player increases the bet multiplier by moving the character forward
step by step. Each step carries a risk of the character’s death, but the user can cash out their winnings at any point during the game.

The goal is to guide the character to the end without dying and achieve the maximum possible payout.

0)

Step — Moving the character to the adjacent cell to the right.

Successful step — The character survives, and the bet multiplier increases.
Unsuccessful step — The character dies, and the game ends.

Death — The character dies.

Standard death — The character is killed by a falling egg.

Wheel of Fortune — A random selection of one of the outcomes on the sectors.

The game operates with the following mechanics:

1.

Setting Up and Starting the Game:
The user sets the bet amount and starts the game, controlling a character that moves across the game field.

. Game Field Cells:

Cells on the field display win multipliers. One of the cells contains a mine.

. Wheel of Fortune:

A secondary gameplay element that influences the game outcome.

. Cashout Option:

The player can cash out their winnings at any time (via the "Cashout" button) or continue moving forward.

. Success Probability Formula:

The chance of a successful move is calculated using a formula that incorporates RTP (Return to Player).

. Final Cell Reward:

Reaching the final cell grants the user the maximum payout.

. Spacebar Actions:

Pressing the spacebar allows the user to:

® Move the character forward,
® Activate the Wheel of Fortune,
® Speed up the wheel's rotation.

To integrate the service, you need to configure the APl and iframe.

Serialization Requirements:

oA WN

. Encoding: UTF-8

. property names are compared case-insensitively

. naming policy is camel case. Example: textForExample

. Enumerations are serialized as strings

. fields with missing values (null or 0) are not ignored and serialized with default values

number handling:

Reading from strings is allowed. Example: "field": 42 and "field": "42" will be deserialized as the number 42

Currency names must be represented using their alphabetic code, according to the ISO 4217 standard. Example: USD, CLP, RUB
Currencies that have minor units must be transmitted in minor units. Example: 100.12 USD = 10012, 100.00 RUB = 10000
Currencies that do not have minor units are transmitted in standard values. Example: 100 CLP = 100, 100 JPY = 100

The number of minor units is determined by the ISO 4217 standard

Response codes:

A successful response contains the "Ok" code

Errors:

Undefined
InternalError

InvalidRequest
InvalidHash
UserNotFound
InsufficientFunds
MaxBetAmountExceeded
BetNotFound
SessionTokenNotFound
InvalidCurrency

If an error occurs, return a JSON object ErrorResponse

ErrorResponse
Ne Name Data Type Nullability
1 ErrorCode string not null
2 ErrorMessage string null

Generation hash:

The hash is generated using the hmac-sha256 algorithm. The message is a concatenation of the method name and fields without spaces. The key used is
the operatorKey.

Authenticate: "authenticate{token}", getbalance: "getbalance{userld}{currency}’, changebalance: "changebalance{betld}{userld}{currencyl{amount}
{transactionType}"

Service Methods:

Authorization and Authentication:

- For authorized users, a token must be generated and inserted into the URL. Example URL: https://provider.com/live?session_token={token}&operator=
{operator}&hash={hash}
- Unauthorized users receive a 403 Forbidden error.

Use case:

Precondition: The user may or may not be authenticated.
Trigger: The user navigates to a page with an iframe.
Steps:

The merchant checks the user's authentication status.

a. If the user is authenticated:

i. The merchant generates a session token

ii. The merchant inserts the session token and operator name into the URL. Example URL: https://provider.com/live?session_token={token}
&operator={operator}&hash={hash}

iii. The merchant calculates hash from the session token and operator as: hash(message, secretKey), where message is concatenation of
session_token and operator ("{session_token}{operator}"), secretKey is operatorKey, given to the merchant by provider

iv. The provider sends a request to the merchant (AuthenticateRequest)

v. The merchant sends user information to the provider (AuthenticateResponse)

vi. The provider authenticates the user

vii. The provider grants the user access to the game

b. If the user is not authenticated:
i. The merchant displays the provider’s website withe a 403 Forbidden error

Authenticate

https://provider.com/live?session_token={token}&operator={operator}&hash={hash
https://provider.com/live?session_token={token}&operator={operator}&hash={hash
https://provider.com/live?session_token={token}&operator={operator}&hash={hash
https://provider.com/live?session_token={token}&operator={operator}&hash={hash

Method POST /api/authenticate
Input data AuthenticateRquest

Output data = AuthenticateResponse

If an error occurs, return a JSON object ErrorResponse

AuthenticateRequest
Ne Name Data Type Nullability Description
1 Token string not null Session token generated by merchant
2 operator string not null Operator name. Issued to the merchant by the provider
3 Hash string not null -
AuthenticateResponse
Ne Name Data Type Nullability Description
1 Userld string (64) not null Unique user ID in merchant's system
2 Username string (100) not null User display name. Duplicates are allowed
3 Currency string(3) not null User currency (ISO 4217 alphabetic code)

Player balance adjustment:

Use case:

Precondition: The user is authenticated.

Trigger: The user places a bet.

Steps:

1. The provider sends a user balance request: Userld, Hash (GetBalanceRequest)

2. The merchant sends the user’s balance: Balance, Currency (GetBalanceResponse)

a. If the user has sufficient funds:
i. The provider sends a balance change request along with bet details: Betld, Userld, Currency, Amount, TransactionType, Hash

(ChangeBalanceRequest)
ii. The merchant updates the user’s balance and sends transaction details: Balance, Currency, Transactionld (ChangeBalanceResponse)
ii. The provider processes the bet

b. If the user has insufficient funds:
i. The provider rejects the bet

Get Balance
Method POST /api/getbalance
Input data GetBalanceRequest

Outputdata = GetBalanceResponse

GetBalanceRequest

Ne Name Data Type Nullability Description
1 Userld string(64) not null Unique user ID in merchant's system
2 Currency string(3) not null User currency (ISO 4217 alphabetic code)
3 Hash string not null -

GetBalanceResponse

Ne Name Data Type Nullability Description

1 Balance | int (long) not null User balance

2 Currency = string (3) not null User currency (ISO 4217 alphabetic code). User's currency must not differ in subsequent requests

Change Balance

Method POST /api/changebalance
Input data ChangeBalanceRequest

Output data ChangeBalanceResponse

ChangeBalanceRequest

Ne Name Data Type Nullability Description
1 Betld int (64) not null Bet ID in provider's system
2 Userld string (64) not null Unique user ID in merchant's system
3 Currency string (3) not null User currency (ISO 4217 alphabetic code)
4 Amount number not null Transaction amount. The value is always greater than 0
5 TransactionType = enum(string) | not null Transaction type:

® BetPlacement - debit of funds to place a bet
® BetRefund - depositing funds due to bet refund
® BetWin - depositing funds due to bet win

6 Hash string not null -

ChangeBalanceResponse

Ne Name Data Type Nullability Description
1 Balance int (long) not null User balance
2 Currency string (3) not null User currency (ISO 4217 alphabetic code). User's currency must not differ in subsequent requests
3 Transactionld | string (64) not null Unique transaction ID in merchant's system

Sequence diagrams

Authentication

IFrame

Provider

I

I

sessionToken I
'._

Merchant

alt

Authenticate(sessionToken)

I
|
I
I
t
|
I
I

User info
..‘. ______________
POST GetBalance(userld)
Balance
* ______________

opt) [Account doesn't exist]

Create account

—

Sign In & redirect page

—

Change balance

Provider Merchant
Player

- [

I

Make bet I

POST GetBalance({userld)
Balance
o R —
alt [betamount > Balance]
Insufficient funds
......... AL T It LRL b RLLAALLALESRLLLLEALEELREREREES b RARERRRCRELLREALEEEE
POST ChangeBalance
Balance check
alt [betamount = Balance]

Insufficient funds

[betamount <= Balance]

Bet accepted

Error (InsufficientFunds)

ExternalTransactionld

Create bet and account transaction

PR

Create transaction

pE

	Сrazy cock

